Innovation for Our Energy Future

Combinatorial Measurements of PV Aging

Matthew O. Reese

National Renewable Energy Laboratory (NREL)

Introduction

- Organic photovoltaics (OPV) overview
- OPV efforts at NREL
- Examples of causes of instability
- Combinatorial degradation system

Motivation for Organic Photovoltaics (OPV)

OPV: Solution processibility → Low cost

Commercial Applied Basic

Teaming/
Collaboration

Device Fabrication & Characterization

Photoinduced Electron Transfer

Typical OPV Device Geometry

OPV Kinetic Pathways

OPV Specific Efforts at NREL

Materials

- Polymers
- Conjugated dendrimers
- •ZnO
- •TiO₂
- •(any oxide!)
- Carbon nanotubes

Synthesis/Characterization

- •Gel permeation chromatography
- Thermogravimetric analysis
- Differential scanning calorimetry

Optical

- •UV-Vis†
- •TA
- •PL
- •TRPL
- Ellipsometry

Device Architecture

- Organic bulk heterojunctions
- Oxide/organic hybrid
- Inverted devices

Device Measurement

- •J-V[†]
- Certified efficiency measurements
- •Impedance spectroscopy[†]
- •EQE[†]

Fabrication

- Spin coating[†]
- •Evaporation†
- Spray deposition
- Inkjet printing[†]
- •Ultrasonic spray[†]
- Dip coating
- •Drop casting[†]

Theory

Physical

- XRD
- •NMR
- •SEM
- •TEM
- •AFM
- Profilometry

Carrier Dynamics

- •Time of flight (TOF)
- •Time-resolved microwave conductivity (TRMC)[†]
- •Time-resolved THz spectroscopy (TRTS)
- Charge extraction under linearly increasing voltage (CELIV)

International Summit on OPV Stability

- Sponsored by DOE, NREL, and Plextronics
- Focus international efforts on OPV stability
- 21 organizations, industrial/national lab emphasis
- Resulted in recommended practices for:
 - Shelf-life measurements
 - Outdoor testing
 - Indoor accelerated light soaking
 - Packaging/encapsulation testing
 - Determination of "stabilized efficiency"
- NREL organizing round robin
- Wiki: http://www.wikispaces.com/opvlifetime

Round Robin For Standardization Strategy

- First round robin send out filtered Si solar cell
 - Hamamatsu can build a set of "identical" devices
 - Soliciting international participants with a 30 lab limit
- Next Have a device for P3HT and for Low Band Gap, CuPc/C60
 - Geometry constraints could be a problem
- Starting process now
 - January 1 to send out devices
 - Measurements to be completed in 6 months (published in journal)
 - Labs' measurements received before sharing certified performance
- Second round
 - Better defined in ~1 year
 - Will use an OPV device from commercial supplier (Konarka has volunteered).
- Participants will be identified, but not their data
- Paper for original state of the measurements and a second for the evolution of the measurements

Proposed Roadmap Changes

Basic Standards for Device Certification

- IEC 61646 Edition 2.0 2008-05 Thin-film terrestrial photovoltaic (PV) modules – Design qualification and type
- Designation: E 2236 05a Standard Test Methods for Measurement of Electrical Performance and Spectral Response of Nonconcentrator Multijunction Photovoltaic Cells and Modules
- Designation: E 1036 02 (Reapproved 2007) Standard Test Methods for Electrical Performance of Nonconcentrator Terrestrial Photovoltaic Modules and Arrays Using Reference Cells
- Designation: E 1171 04 Standard Test Methods for Photovoltaic Modules in Cyclic Temperature and Humidity Environments

OPV Goals

- Efficiency Goals
 - -2009-6.5%
 - -2020-14%
- Stability Goals
 - 2009 5% with 2000 hours
 - 2012 7 % with 5000 hours
 - 2020 10 % with 10000 hours
- Scalability
 - $-2009 1 \text{ cm}^2 \text{ with } 5\%$
 - 2012 100 cm² with 7%

Some Causes of Instabilities

- Active Layer
- Hole Transport Layer
- Electrode Contacts: Metals, TCOs
- Interfaces
- Photo-activated mechanisms
- Temperature activated mechanisms

Causes of Instabilities – Active Layer

Inert atmosphere – Different Temperature, Illumination

- 1) F. Padinger, et al., Syn. Metals 121 (2001) 1605.
- 2) M.O. Reese, et al., Sol. Energy Mater. Sol. Cells 92 (2008) 746.

Electrode Type Study on P3HT:PCBM Devices (Six week shelf life study)

- M.O. Reese, et al., Appl. Phys. Lett. 92 (2008) 053307.
- 2. M.O. Reese, et al., Sol. Energy Mater. Sol. Cells 92 (2008) 746.

Building a Combinatorial Degradation Setup

- Large area light source
- Addressable filtering
- Variable load conditions
- Temperature control
- Measurement electronics
- Atmospheric control
- Modular

Solar Simulators Elements of IEC 60904-9, ed. 2.0

Wavelength	400-	500-	600-	700-	800-	900-
Range (nm)	500	600	700	800	900	1100
Percent Total Irradiance from 400-100nm	18.4%	19.9%	18.4%	14.9%	12.5%	15.9%

	Spootrol		Temporal Instability			
Class	Spectral Mismatch to All Intervals	Spatial Non- uniformity	Short Term (STI)	Long Term (LTI)		
А	0.75-1.25	2%	0.5%	2%		
В	0.6-1.4	5%	2%	5%		
С	0.4-2.0	10%	10%	10%		

Lamps

Lamp	"Typical" Lifetime (hr)	Cost Entry (Maintenance)	Watts	Area at 1 Sun	Color Temp.	Comments
Tungsten Halogen [ELH (36-42°)]	35	<\$20 (<\$10)	300	~5 cm ²	3350K	Short life limits utility for lifetime studies
Tungsten Halogen [EXT (15°)]	4000- 6000	<\$20 (<\$10)	50	~1 cm ²	3050K	May be able to make arrays (diffuser?)
Tungsten Halogen [Solux (10°)]	3000	<\$20 (<\$10)	50	<1 cm ²	4700K	May be able to make arrays (diffuser?)
Metal Halide [M.1000W.U56.CDX]	9000	\$350-450 (~\$100)	1000	~0.1 m ²		Not continuous spectrum
Sulphur Plasma [PSH07 (90°)]	15000- 20000	\$1000- 1500 (~\$200)	750	~0.1 m ²	2000- 7500K	Higher power may become available
Xenon [PE240E-13FM]	1000	\$13000 (~\$3-4k)	2400	~0.25- 0.33 m ²	~6000K	Mounting direction can be critical; rotate bubble lamps as they blacken

Lamp Spectra

Sulfur Plasma Lamp (LG PSH07)

Sulfur Plasma Lamp (LG PSH07)

- Bulb lifetime 4-12 yrs
- Magnetron (power supply) lifetime 15k-20k hrs

$$(1yr = 8760 hrs)$$

- Mismatch to P3HT:PCBM ~ 1.005
- Spatial uniformity ~ 1.5% in ±20° cone

Spatial Uniformity Mapping

Combinatorial Degradation Fixturing Pieces

Modular multichannel JV reliability system

- 2 systems:
 - Ambient
 - Controlled atm. (glovebox)
- Up to 360 devices (60 substrates) per system
- Retractable shutters with 1" square cutouts → fully settable illumination conditions (ND & color filters, constant/shuttered illumination)
- Up to six temp. (0-85C)

Combinatorial Degradation Setup

Measurement Electronics

- Six banks
- Settable load conditions
- 60 simultaneous JV curves
 - ± 6 µA resolution (100 mA range)
 - ± 1 µA resolution (10 mA range)
- ± 10V output (0.15 mV resolution)
- Reference diode monitoring (two/bank)
- Temperature monitoring (two/bank)

Color Filter Selection

Standing Questions

- Wavelength dependence
- Intensity dependence
- Temperature dependence
- Load conditions
- Healing factors from cycled illumination
- Interfacial vs active layer degradation
- Material system (is each OPV material system as different as each inorganic system?)
- What are acceptable statistics?

OPV Effort at NREL

National Center for Photovoltaics

Dr. Teresa Barnes

Dr. Jeremy Bergeson

Dr. Joseph Berry

Dr. David Ginley

Dr. Dana Olson

Dr. Zybyzlaw Owczarcyk

Dr. Matthew Reese

Dr. Benjamin Rupert

Chemical & Biosciences Center

Dr. Andrew Ferguson

Dr. Brian Gregg

Dr. Nikos Kopidakis

Dr. Jao Van de Lagemaat

Dr. Ziqi Liang

Dr. Matthew Rawls

Dr. Thomas Reilly

Dr. Garry Rumbles

Dr. Michael Woodhouse

Materials & Computation Sciences Center

Dr. Jeffrey Blackburn

Dr. Peter Graf

Dr. Kwiseon Kim

Dr. M. Erkan Kose

Dr. Robert Tenent

Graduate Students

Jamie Albin

Brian Appleby

Allison Kanarr

Anthony Morfa

Will Rance

K. Xerxes Steirer

Matthew White

N. Edwin Widjonarko

Affiliates

Prof. Reuben Collins (Mines)

Prof. Sean Shaheen (Univ. of Denver)

Dr. Alexandre Nardes (Univ. of Denver)